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Chapter 1

Dynamic Testing of Polymer Materials

1.1 Instruments for Dynamic Testing of Polymers

There are five (5) main classes of experiments for measurement of viscoelastic behaviour

1. Transient measurements: creep and stress relaxation

2. Low frequency vibrations: free oscillations methods

3. High frequency vibrations: resonance methods

4. Forced vibration non-resonance methods

5. Wave propagation methods

The frequency scale for the different test methods are shown in Figure(1.1)
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Figure 1.1: Frequency Scale for Different Test Methods

Dynamic characterization of elastomeric materials and polymers requires the use of so-

phisticated instruments with high fidelity load cells, displacement transducers and strain

gauges to understand the deformations taking place in the material under dynamic frequen-

cies. A Rheometer is used to test the dynamic properties during cure. A servo hydraulic

fatigue testing machine and dynamic mechanical analyzer (DMA) instruments are the pri-

mary material testing instruments used in dynamic characterization of polymers. The so-

phistication of material testing instruments increase with needs for higher frequencies and

higher loads. Strain gauge based and piezoelectric quartz based load cells are used in this

instruments to study the load, stress and strain and record the test data.

Along with high quality hardware need also arises for a sophisticated and advanced

software to carry out all the calculations. The software that calculates all the dynamic

properties also needs to be as sophisticated and advanced as the hardware required to do

the test
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Figure 1.2: AdvanSES High Frequency and ElectroMechanical Testing Setup

Figure(1.2) shows the AdvanSES servo hydraulic tester used in material testing at high

frequencies the servo hydraulic tester is capable of going up to 100 hertz under sine wave

definition hydraulic actuator is the primary source of frequency generation in the instrument

and the servo valve in the actuator controls the flow of hydraulic fluid into the actuator so as

to apply a controlled displacemtn at controlled frequency. The load cell in the instrument

measures the loads generated in the sample under the dynamic frequencies. The servo

hydraulic tester is primary primarily used to study static and dynamic stiffness, loss and

storage modulus and Tan-delta. Fatigue crack growth propagation of rubber samples can

also be tested using a high fps camera integrated with the tester. Elevated temperature

testing is also available with the use of a temperature chamber with automatic PID control.

Page 3 c©Kartik Srinivas



Figure 1.3: AdvanSES High Frequency Testing Setup with Temperature Chamber

High temperature tests (e.g. tensile, compression, flexure and fatigue tests) are used to

determine the thermal-elastic behavior, heat resistance, endurance and durability of metal-

lic and polymer materials. Elevated temperatures is combined with mechanical testing,

environmental aging, analytical solution methods to develop and provide a comprehensive

test protocol to evaluate materials and components.

Figure 1.4: Oscillating Rheometer for Dynamic Testing
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Figure(1.4) shows a rheometer instrument used for studying the dynamic properties of

uncured and cured rubber compounds. The instrument consists of a torque applicator, an

oscillator and a load measuring device. The sample is held between the torque bar and

the cup. The oscillator supplies an oscillatory motion that is transferred to the sample by

the cup. The angular torsional deformations of the sample and the load generated in the

instrument are measured using advanced load cell, displacement transducers and rotary

encoders. A sine wave is input into the sample and a sine wave is similarly output from the

instrument, both the input and output waves are compared to calculate the storage modulus,

loss modulus and the tangent delta.

The sample requirements for the rheometer testing are that the samples should be di-

mensionally stable of rectangular or cylindrical cross section. To test the material a sample

is firmly gripped at both ends. the specimen is electromagnetically or servo driven into

sinusoidal oscillations of defined amplitude and frequency. The viscoelastic properties of

the material makes the torque lag behind the deformation. The lag between the input and

output is the phase angle as shown earlier in Figure(??). The observed values for load,

phase angle, and geometry constant of the specimen is used to calculate the complex shear

modulus G*, the storage shear modulus G’, the loss shear modulus G”, and tan delta.
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Figure 1.5: Axial Dynamic Mechanical Analyzer with Furnace

Figure(1.5) shows a DMA instrument manufactured buy TA Instruments. As shown in

the figure, a force motor with a coil and magnet is used to apply a force and lvdt measures

the displacement of the sample. Furnace is provided for elevated and low temperature

measurements. The sample is kept inside the furnace and a sine wave is input into the force

motor, the resultant sine wave voltage of the lvdt is now compared to the input sine wave

and the storage modulus, loss modulus, phase and tan delta are calculated from the test

results data.
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Figure 1.6: Axial Dynamic Mechanical Analyzer with Interchangable Sample Fixtures.

Image Courtesy: Perkin Elmer Industries

Figure(1.6) shows a DMA instrument from Perkin Elmer. When compared to the TA

Instruments, both the machines have similar performance. Both the instruments can be

operated under stress control and strain control. Creep and stress relaxation experiments

can be carried out in all the instruments along with frequency sweep, strain sweep and

temperature sweep studies

A DMA instrument is very versatile instrument able to apply different deformation

modes on the sample. Different deformation modes can be chosen based upon the quality

of the material and the material properties under study. Figure(1.7) shows the different

deformation modes available for application in a DMA instrument. Single and double

cantilever beam, tensile, shear, compression and three point bending tests can be carried

out using different kinds of fixtures.
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Figure 1.7: Deformation Modes Available in a Typical DMA Machine, Image Courtesy:

TA Instruments and Perkin Elmer Industries

Materials such as hard polymers or soft viscoelastic elastomers are ideal materials to be

tested on a DMA machine for dynamic properties. The testing conditions and parameters

such as applied frequency range, temperature and available sample sizes and shape dictate

the machine required for the testing. To carry out frequency and strain sweep studies on

automotive and aerospace components, it becomes imperative to use a servo hydraulic

machine. While the necessity to study the dynamic property of a material during processing

makes it imperative to use a moving or oscillating die rheometer.

The importance of dynamic testing comes from the fact that performance of elastomers

and elastomeric products such as engine mounts, suspension bumpers, tire materials etc.,

cannot be fully predicted by using only traditional methods of static testing. Elastomer

tests like hardness, tensile, compression-set, low temperature brittleness, tear resistance

tests, ozone resistance etc., are all essentially quality control tests and do not help us under-

stand the performance or the durability of the material under field service conditions. An

elastomer is used in all major applications as a dynamic part being able to provide vibra-
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tion isolation, sealing, shock resistance, and necessary damping because of its viscoelastic

nature. Dynamic testing truly helps us to understand and predict these properties both at

the material and component level.

1.2 ASTM D5992 and ISO 4664-1

ASTM D5992 covers the methods and process available for determining the dynamic prop-

erties of vulcanized natural rubber and synthetic rubber compounds and components. The

standard covers the sample shape and size requirements, the test methods, and the pro-

cedures to generate the test results data and carry out further subsequent analysis. The

methods described are primarily useful over the range of temperatures from cryogenic to

200◦C and for frequencies from 0.01 to 100 Hz, as not all instruments and methods will

accommodate the entire ranges possible for material behavior.

Figures(1.8 and 1.9) show the results from a frequency sweep test on five (5) different

elastomer compounds. Results of Storage modulus and Tan delta are plotted.

Figure 1.8: Plot of Storage Modulus Vs Frequency from a Frequency Sweep Test
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Figure 1.9: Plot of Tan delta Vs Frequency from a Frequency Sweep Test

The frequency sweep tests have been carried out by applying a pre-compression of

10 % and subsequently a displacement amplitude of 1 % has been applied in the positive

and negative directions. Apart from tests on cylindrical and square block samples ASTM

D5992 recommends the dual lap shear test specimen in rectangular, square and cylindrical

shape specimens. Figure(1.10) shows the double lap shear shapes recommended in the

standard.
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Figure 1.10: Double Lap Shear Shapes
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